

IC Test Report

Issued date: Jun. 03, 2025

Project No.: 24Q122702

Product: AI Computing System

Model: MIG-3000

Series Model: MIG-3XXXXXXXXXXX ("X" can be 0-9, A-Z or blank)

Applicant: Vecow Co., Ltd

Address: 3F, No. 10, Jiankang Rd., Zhonghe Dist., New Taipei City 23586,

Taiwan

Report No: WD-EI-R-250171-A0

According to

ICES-003: 2020 Issue 7, Class A ANSI C63.4: 2014

ANSI C63.4a: 2017

Authorized Signatory : Mach

/ Ken Huang

Wendell Industrial Co., Ltd Wendell EMC & RF Laboratory

Add: 5F-1, No. 188, Baoqiao Road, Xindian District, New Taipei City 23145, Taiwan R.O.C.

Page 1 of 30 4.0

Table of Contents

1 Cert	ification	5
1.1 Su	ımmary of Result	6
2 Lab	oratory Information	7
2.1 M	easurement Facility	7
2.2 M	easurement Uncertainty	8
2.2.1	Conducted Emission Measurement	8
2.2.2	Radiated Emission Measurement	
3 Gen	eral Information	9
3.1 D	escription of Equipment Under Test	9
3.2 D	escription of Measurement Modes	. 10
	escription of Operating Condition	
	escription of Associated Equipment	
3.5 C	onfiguration of Equipment Under Test	. 12
4 Emis	ssion Measurement	. 13
4.1 C	onducted Emission Measurement	. 13
4.1.1	Limit of Conducted Emission Measurement	. 13
4.1.2	Measurement Instrument	
4.1.3	Measurement Procedure	. 15
4.1.4	Deviation from Standard	
4.1.5	Measurement Configuration	
4.1.6	Measurement Result	
4.1.7	Photographs of Measurement Configuration	
4.2 R	adiated Emission Measurement	. 20
4.2.1	Limit of Radiated Emission Measurement	. 20
4.2.2	Measurement Instrument	
4.2.3	Measurement Procedure	
4.2.4	Deviation from Standard	
4.2.5	Measurement Configuration	
4.2.6	Measurement Result	
4.2.7	Photographs of Measurement Configuration	. 29

History of this test report

Report No.	Issue date	Description
WD-EI-R-250171-A0	Jun. 03, 2025	Initial Issue

Declaration

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us.

Page 3 of 30 4.0

History of supplementary report

Report No.	Issue date	Description
WD-EI-R-250171-A0	Jun. 03, 2025	Original report

Declaration

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us.

Page 4 of 30 4.0

1 Certification

Product: AI Computing System

Brand Name: Vecow

Model: MIG-3000

Series Model: MIG-3XXXXXXXXXXX ("X" can be 0-9, A-Z or blank)

Applicant: Vecow Co., Ltd

Tested: May 20 ~ May 23, 2025

Standard: ICES-003: 2020 Issue 7, Class A

ANSI C63.4: 2014

ANSI C63.4a: 2017

The above equipment (Model: MIG-3000) has been tested by **Wendell EMC & RF Laboratory**, and found compliance with the requirement of the above standards. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Please note that the measurement uncertainty are provided for informational purpose only and are not used in determining the Pass/Fail results.

Page 5 of 30 4.0

1.1 Summary of Result

The EUT has been tested according to the following specifications:

Emission							
Standard	Test Item	Limit	Result	Remark			
ICES-003	Conducted disturbance at mains power ports	Class A	Pass	Meets the requirements			
TCLS-003	Radiated disturbance	Class A	Pass	Meets the requirements			

Note: Test record contained in the referenced test report relate only to the EUT sample and test item.

Page 6 of 30 4.0

2 Laboratory Information

2.1 Measurement Facility

Conducted disturbance at main power port test

W01: 5F-1, No.188, Baoqiao Rd., Xindian Dist., New Taipei City 23145, Taiwan (R.O.C)

Conducted disturbance at main power port and Radiated disturbance (9*6*6 Chamber) test

W08: No.119, Wugong 3rd Rd., Wugu Dist., New Taipei City 248, Taiwan (R.O.C)

ACCREDITATIONS

The laboratories are accredited and approved by the TAF according to ISO/IEC 17025.

Page 7 of 30 4.0

2.2 Measurement Uncertainty

The measurement instrumentation uncertainty is evaluated according to CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Wendell EMC & RF Laboratory U_{lab} is less than U_{cispr} , therefore compliance or non-compliance with a disturbance limit shall be determined in the following manner.

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

Please note that the measurement uncertainty ($U_{\rm lab}$) is provided for informational purpose only and is not used in determining the Pass/Fail results.

2.2.1 Conducted Emission Measurement

Test Site	Frequency Range	$dB(U_{lab})$	Note
W01-CE	150 kHz ~ 30 MHz	2.84	LISN
W08-CE	150 kHz ~ 30 MHz	2.72	LISN

2.2.2 Radiated Emission Measurement

Test Site	Frequency Range	Ant	dB (U _{lab})	Note
	30 MHz ~ 200 MHz	V	3.50	N/A
	30 MHz ~ 200 MHz	Н	2.96	N/A
	200 MHz ~ 1000 MHz	V	5.09	N/A
	200 MHz ~ 1000 MHz	Н	3.41	N/A
*****	1 GHz ~ 6 GHz	V	4.37	N/A
W08-966-1	1 GHz ~ 6 GHz	Н	4.30	N/A
	6 GHz ~ 18 GHz	V	4.49	N/A
	6 GHz ~ 18 GHz	Н	4.60	N/A
	18 GHz ~ 40 GHz	V	4.44	N/A
	18 GHz ~ 40 GHz	Н	4.44	N/A

Page 8 of 30 4.0

3 General Information

3.1 Description of Equipment Under Test

Product	AI Computing System
Brand	Vecow
Model	MIG-3000
Series Model	MIG-3XXXXXXXXXX ("X" can be 0-9, A-Z or blank)
Applicant	Vecow Co., Ltd
Received Date	Jan. 03, 2025
EUT Power Rating	24Vdc (from adapter)
Model Differences	The models are electrically identical, different models no. are for marketing purpose. The series model information is provided by client.
Operating System	Windows 11 Professional version: 24H2
Data Cable Supplied	N/A
Accessory Device	N/A
I/O Port	Please refer to the User's Manual

Note:

1. The EUT uses the follow adapter:

Adapter (support unit only)					
Brand	LITEON				
Model PA-1181-28E					
Input Power	100-240Vac, 2.34A, 50-60Hz				
Output Power	24Vdc, 7.5A				
Power line	Input: 1.8m non-shielded cable Output: 1m non-shielded cable with 2 cores				

2. The EUT contains following components.

Item	Brand	Model	Spec.	Qty.
CPU	Intel	13th Gen Intel® Core™ i7-13700E	1.80 GHz	1
RAM	innodisk	M5D0-BGS2Q5VP-H03	32GB DDR5 4800 W/T ECC SODIMM	2
M.2 SSD	innodisk	DEM24-C12DD1KCCQF-H03	M.2(P42) 3TE6 512GB	1

3. The EUT's highest operating frequency is 1800MHz. Therefore the radiated emission is tested up to 9GHz.

Page 9 of 30 4.0

3.2 Description of Measurement Modes

Test results are presented in the report as below.

Test Mode	de Measurement Condition					
	Conducted Emission Measurement					
-	- AC-DC Adapter mode					
	Radiated Emission 30MHz ~ 1GHz Measurement					
-	AC-DC Adapter mode					
Radiated Emission above 1GHz Measurement						
-	AC-DC Adapter mode					

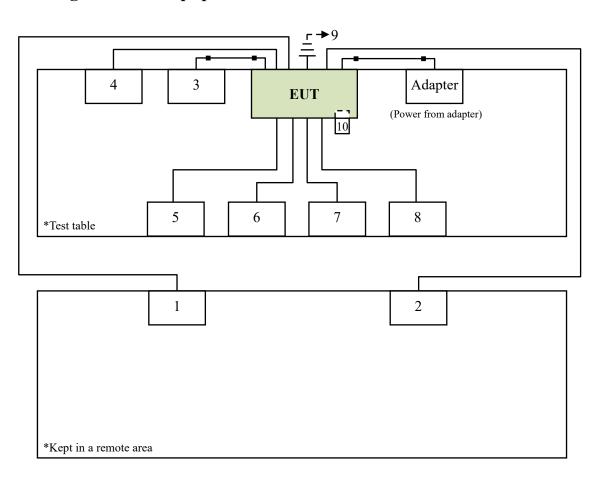
3.3 Description of Operating Condition

- a. The EUT placed on test table.
- b. Prepare PC to act as a communication partner and placed it outside of testing area.
- c. The EUT was connected to the PC with LAN cable.
- d. The communication partner sent data to EUT by command "ping" via LAN.
- e. The EUT read / write data with Internal SSD & External SSD.
- f. The EUT run test program BurnIN.exe to enable all functions.
- g. The EUT sent H message to monitor and displayed on screen.
- h. The microphone sent voice signal to EUT.
- i. The EUT sent voice signal to earphone.

3.4 Description of Associated Equipment

The EUT has been conducted testing with other necessary accessories or support units.

Item	Equipment	Brand	Model No.	Serial No.	FCC ID	Data Cable	Power Cable	Remark
1	Desktop PC	DELL	D19M	N/A	PPD-QCNF A335	15m CAT.6A shielded LAN cable	AC: 1.8m non-shielded cable	-
2	Desktop PC	DELL	D24M	N/A	PD93165NG	15m CAT.6A shielded LAN cable	AC: 1.8m non-shielded cable	-
3	4K Monitor	ASUS	XG27UCS	S5LMTF2007 65	FCC SDoC Approved	1.5m shielded HDMI cable with 2 cores	AC: 1.8m non-shielded cable	-
4	4K Monitor	ASUS	XG27UCS	S7LMT011954	FCC SDoC Approved	1.7m shielded DP cable	AC: 1.8m non-shielded cable	-
5	Keyboard	DELL	KB216t	CN-0W33XP- L0300 -7C1-15UP	FCC SDoC Approved	1.5m non-shielded USB cable	N/A	-
6	Mouse	DELL	MS116	CN-0DV0RH- L0300 -7C1-15UP	FCC SDoC Approved	1.5m non-shielded USB cable	N/A	-
7	Earphone & Microphone	Avier	AEP-MM	N/A	N/A	1.2m non-shielded audio cable	N/A	-
8	External Portable SSD (x2)	Transcend	TS120GES D240C	F96474-0001	FCC SDoC Approved	1m shielded USB cable	N/A	-
9	Grounding wire	N/A	N/A	N/A	N/A	1m non-shielded cable	N/A	-
10	RS232 terminator (x2)	N/A	N/A	N/A	N/A	N/A	N/A	Supplied by client


Note: 1. The core(s) is(are) originally attached to the cable(s).

Page 11 of 30 4.

^{2.} Item 1-2 acted as communication partners to transfer data.

3.5 Configuration of Equipment Under Test

4 Emission Measurement

4.1 Conducted Emission Measurement

4.1.1 Limit of Conducted Emission Measurement

	Class A	(dBµV)	Class B (dBµV)		
Frequency (MHz)	Quasi-peak (dBµV)	Average (dBμV)	Quasi-peak (dBμV)	Average (dBμV)	
0.15 to 0.5	79	66	66 to 56*	56 to 46*	
0.5 to 5	73	60	56	46	
5 to 30	73	60	60	50	

^{*} Decreases with the logarithm of the frequency.

Note: 1. The lower limit shall apply at the transition frequencies.

- 2. Detector function in the form: QP = Quasi Peak, AVG = Average
- 3. The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = LISN Factor + Cable Loss + Transient Limiter (If use)

Margin Level = Measurement Value – Limit Value

Page 13 of 30 4.0

4.1.2 Measurement Instrument

	Test Site: W01-CE									
Item	Equipment	Manufacturer Model		Meter No.	Calibration Date					
1	TWO-LINE V-NETWORK	R&S	ENV216	CT-1-025-1	Apr. 26, 2025					
2	Pulse limiter	R&S	ESH3-Z2	CT-2-015	Apr. 23, 2025					
3	EMI Test Receiver	R&S	ESCI	CT-1-024	Apr. 18, 2025					
4	Artificial Mains Network (AMN)	SCHWARZBECK	NSLK 8127	CT-1-104-1	Apr. 26, 2025					
5	RF Cable	MVE	200200.400LL .500A	CT-9-101	Apr. 23, 2025					
6	50ohm Termination	N/A	N/A	CT-1-065-1	Apr. 26, 2025					
7	Measurement Software	EZ-EMC	Ver: EMC-CON 3A1	CT-3-012	No calibration request					

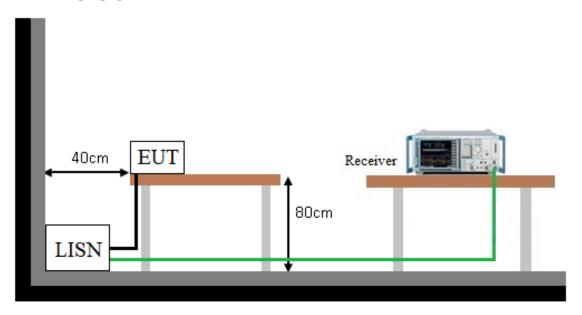
Note: 1. The calibration interval of the above test instruments is 12 months.

	Test Site: W08-CE									
Item	Equipment	Manufacturer	Manufacturer Model		Calibration Date					
1	TWO-LINE V-NETWORK	R&S	R&S ENV216 CT		Jun. 20, 2024					
2	RF Cable EMCI EMCCFD300- BM-BM-5000 CT-1-107-2		CT-1-107-2	Jun. 24, 2024						
3	EMI Test Receiver	R&S	R&S ESR3 CT-1-103		Jun. 20, 2024					
4	Artificial Mains Network (AMN)	SCHWARZBECK	NSLK 8127 RC	CT-1-104-1R C	Jun. 20, 2024					
5	Transient Limiter	Electro-Metrics	EM-7600	CT-1-026	Jun. 24, 2024					
6	50ohm Termination	N/A	N/A	CT-1-109-1	Jun. 20, 2024					
7	Measurement Software	EZ-EMC	Ver: EMC-CON 3A1	CT-3-012	No calibration request					

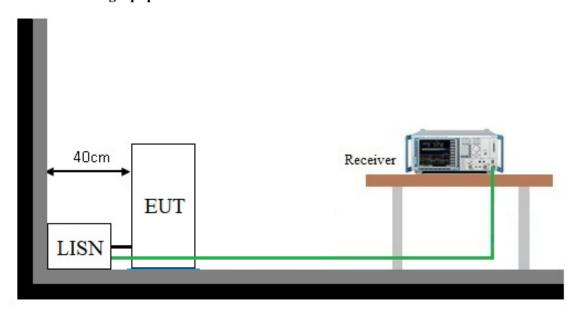
Note: 1. The calibration interval of the above test instruments is 12 months.

4.1.3 Measurement Procedure

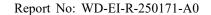
- a. The table-top equipment under test was placed 0.8 meter height wooden table from the horizontal ground plane with EUT being connected to power source through a line impedance stabilization network (LISN). The floor-standing equipment under test and all cables shall be insulated from the ground plane by up to 12 mm of insulating material if required. The LISN at least be 0.8 meter from nearest chassis of equipment under test.
- b. The line impedance stabilization network (LISN) provides 50 ohm/50uH of coupling impedance for the measuring instrument. All associated equipment powered from additional LISN(s).
- c. Interrelating cables that hang closer than 0.4 meter to the ground plane shall be folded back and forth in the center forming a bundle. All I/O cables were positioned to simulate typical usage.
- d. Interconnect cabling or wiring shall be connected to one of each type of functional port of the equipment under test, and each cable or wire shall be terminated in a device typical of actual usage. Where there are multiple ports all of the same type, additional connecting cables or wires shall be added to the equipment under test to determine the effect these cables or wires have on emission from the equipment under test.
- e. The EMI test receiver connected to the line impedance stabilization network (LISN) powering the equipment. The measurements shall be limited to the operating ranges of voltage and frequency as specified for the equipment under test, having regard to the supply voltage and frequency for the intended market of the equipment under test.
- f. The EMI test receiver scanned from 150kHz to 30MHz for emissions in each of modes. A scan was taken on both power lines, Line and Neutral, recording at least six highest emission amplitude.
- g. The equipment under test and cable configuration of the above highest emission amplitude were recorded


4.1.4 Deviation from Standard

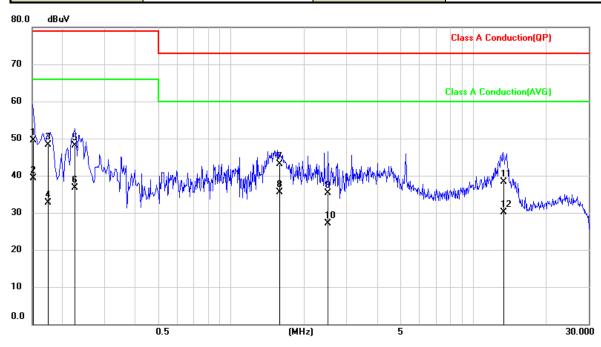
No deviation



4.1.5 Measurement Configuration


< Table-Top equipment under test >

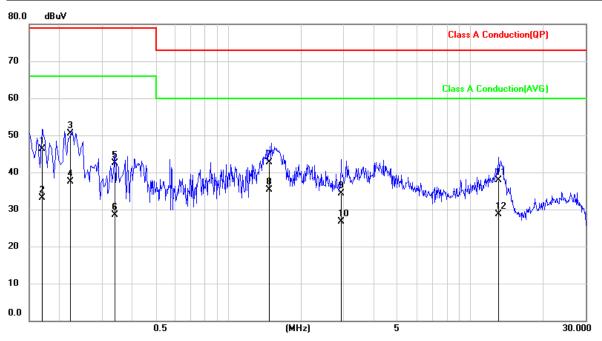
< Floor-Standing equipment under test >


Note: Please refer to 4.1.7 for the actual test configuration.

4.1.6 Measurement Result

Test Voltage	120Vac, 60Hz	Frequency Range	$0.15 \sim 30 \text{ MHz}$
Environmental Conditions	21°C, 50% RH	6dB Bandwidth	9 kHz
Test Date	2025/05/23	Phase	L
Tested by	Guanwei Liao	Test Site	W01-CE

No.	Frequency (MHz)	Reading Level (dBµV)	Correct Factor (dB)	Measurement (dBμV)	Limit (dBµV)	Margin (dB)	Detector
1	0.1518	39.66	9.91	49.57	79.00	-29.43	QP
2	0.1518	29.38	9.91	39.29	66.00	-26.71	AVG
3	0.1739	38.44	9.91	48.35	79.00	-30.65	QP
4	0.1739	22.74	9.91	32.65	66.00	-33.35	AVG
5	0.2262	38.14	9.91	48.05	79.00	-30.95	QP
6	0.2262	26.82	9.91	36.73	66.00	-29.27	AVG
7	1.5871	33.11	9.96	43.07	73.00	-29.93	QP
8	1.5871	25.62	9.96	35.58	60.00	-24.42	AVG
9	2.5073	25.37	9.98	35.35	73.00	-37.65	QP
10	2.5073	17.06	9.98	27.04	60.00	-32.96	AVG
11	13.3552	28.17	10.22	38.39	73.00	-34.61	QP
12	13.3552	19.79	10.22	30.01	60.00	-29.99	AVG


Remark: 1. QP = Quasi Peak, AVG = Average
2. Correct Factor = LISN Factor + Cable Loss + Transient Limiter (If use)

3. Measurement Value = Reading Level + Correct Factor
4. Margin Level = Measurement Value – Limit Value

Page 17 of 30

Test Voltage	120Vac, 60Hz	Frequency Range	$0.15 \sim 30 \text{ MHz}$
Environmental Conditions	21°C, 50% RH	6dB Bandwidth	9 kHz
Test Date	2025/05/23	Phase	N
Tested by	Guanwei Liao	Test Site	W01-CE

No.	Frequency (MHz)	Reading Level (dBµV)	Correct Factor (dB)	Measurement (dBμV)	Limit (dBµV)	Margin (dB)	Detector
1	0.1686	36.31	9.91	46.22	79.00	-32.78	QP
2	0.1686	23.26	9.91	33.17	66.00	-32.83	AVG
3	0.2220	40.61	9.90	50.51	79.00	-28.49	QP
4	0.2220	27.56	9.90	37.46	66.00	-28.54	AVG
5	0.3396	32.55	9.91	42.46	79.00	-36.54	QP
6	0.3396	18.67	9.91	28.58	66.00	-37.42	AVG
7	1.4731	32.67	9.96	42.63	73.00	-30.37	QP
8	1.4731	25.26	9.96	35.22	60.00	-24.78	AVG
9	2.9475	24.37	10.01	34.38	73.00	-38.62	QP
10	2.9475	16.67	10.01	26.68	60.00	-33.32	AVG
11	13.0530	27.55	10.26	37.81	73.00	-35.19	QP
12	13.0530	18.49	10.26	28.75	60.00	-31.25	AVG

- Remark: 1. QP = Quasi Peak, AVG = Average 2. Correct Factor = LISN Factor + Cable Loss + Transient Limiter (If use)
 - 3. Measurement Value = Reading Level + Correct Factor
 4. Margin Level = Measurement Value Limit Value

4.1.7 Photographs of Measurement Configuration

Page 19 of 30 4.

4.2 Radiated Emission Measurement

4.2.1 Limit of Radiated Emission Measurement

Radiated Frequency Range 30 MHz to 1000 MHz

ICES-003 Radiated Emissions Limits								
Frequency range (MHz)	Class A (3m) Quasi-peak (dBµV/m)	Class A (10m) Quasi-peak (dBµV/m)	Class B (3m) Quasi-peak (dBµV/m)	Class B (10m) Quasi-peak (dBµV/m)				
30 - 88	50	40	40	30				
88 - 216	54	43.5	43.5	33.1				
216 - 230	56.9	46.4	46	35.6				
230 - 960	57	47	47	37				
960 - 1000	60	49.5	54	43.5				

Note: 1. The lower limit shall apply at the transition frequency.

- 2. Detector function in the form: PK = Peak, QP = Quasi Peak, AVG = Average
- 3. The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss (Antenna to Pre-Amplifier) -

Pre-Amplifier Gain + Cable Loss (Pre-Amplifier to Receiver)

Margin Level = Measurement Value - Limit Value

Page 20 of 30 4.0

Radiated Frequency Range above 1 GHz

ICES-003 Radiated Emissions Limits							
Frequency range (GHz)		A (3m) V/m)	Class B (3m) (dBµV/m)				
(GIIZ)	Peak	Average	Peak	Average			
1 - 40	80	60	74	54			

Note: 1. The lower limit shall apply at the transition frequency.

- 2. Detector function in the form: PK = Peak, QP = Quasi Peak, AVG = Average
- 3. The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss (Antenna to Pre-Amplifier) -

Pre-Amplifier Gain + Cable Loss (Pre-Amplifier to Receiver)

Margin Level = Measurement Value - Limit Value

Frequency Range (For unintentional radiators)

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40GHz, whichever is lower

4.2.2 Measurement Instrument

	Test Site: W08-966-1								
Item Equipment		Manufacturer Model		Meter No.	Calibration Date				
1	Horn Antenna	Schwarzbeck	BBHA 9120D	CT-9-031	Jul. 29, 2024				
2	Horn Antenna	Schwarzbeck	BBHA 9170	CT-9-032	Aug. 15, 2024				
3	TRILOG Broadband Antenna with 6 dB Attenuator	Schwarzbeck & MVE	VULB 9168 & MVE2251-06	CT-1-096-1	Apr. 29, 2025				
4	Spectrum Analyzer	Agilent	E4407B	CT-1-003(1)	May 06, 2025				
5	EXA Signal Analyzer	Keysight	N9010A	CT-1-093	Aug. 18, 2024				
6	EMI Test Receiver	Keygight NUMAXA CIUM		CT-9-007	May 06, 2025				
7	Preamplifier	EM	EMC330	CT-9-024	May 06, 2025				
8	Preamplifier	SGH & MCL	CL SGH118 & CT-9-0 BW-S15W2+		May 06, 2025				
9	Preamplifier	EMCI	EMC184045SE	CT-9-013	Aug. 16, 2024				
10	Test Cable	EMCI	EMCCFD400-NM- NM-1000	CT-1-132	May 07, 2025				
11	Test Cable	PEWC	CFD400NL-LW-N M-NM-3000	CT-1-141	May 07, 2025				
12	Test Cable	EMCI	EMCCFD400-NM- NM-15000	CT-1-133	May 07, 2025				
13	Test Cable	EMCI	EMC104-SM-35M- 600	CT-1-134	May 07, 2025				
14	Test Cable	MVE	280280.LL266.140 0	CT-9-106	May 07, 2025				
15	Test Cable	EMCI	EMC102-KM-KM- 600	CT-1-136	Aug. 21, 2024				
16	Test Cable	MVE	140140.LL404.700	CT-9-100	May 07, 2025				
17	Measurement Software	EZ-EMC	Ver :WD-03A1-1	CT-3-012	No calibration request				

Note: 1. The calibration interval of the above test instruments is 12 months.

4.2.3 Measurement Procedure

- a. The table-top equipment under test was placed on the top of a turntable 0.8 meters above the ground at 3 m 966 chamber. The floor-standing equipment under test and all cables shall be insulated from the ground plane by up to 12 mm of insulating material if required. The turntable was rotated 360 degrees to determine the position of the highest radiation emissions.
- b. The height of the antenna shall vary between 1 m to 4 m. Both vertical and horizontal polarizations of the antenna were set to make the measurement.
- c. The EUT was set up as per the test configuration to simulate typical usage per the user's manual. All I/O cables were positioned to simulate typical usage.
- d. Interconnect cabling or wiring shall be connected to one of each type of functional port of the equipment under test, and each cable or wire shall be terminated in a device typical of actual usage. Where there are multiple ports all of the same type, additional connecting cables or wires shall be added to the equipment under test to determine the effect these cables or wires have on emission from the equipment under test.
- e. The initial step in collecting radiated emission data is a spectrum mode scanning the measurement frequency range.

Below 1GHz:

Reading in which marked as QP means measurements by using receiver mode with detector setting in RBW = 120 kHz.

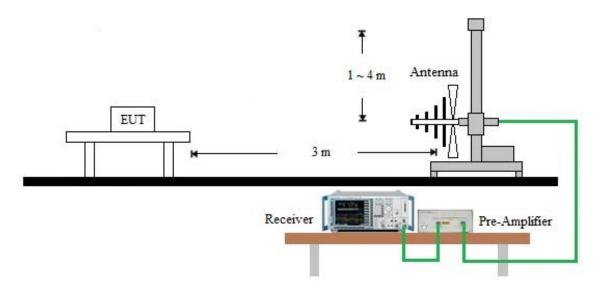
If the spectrum mode measured peak value compliance with and lower than QP Limit, the equipment under test shall be deemed to meet QP Limits.

Above 1GHz:

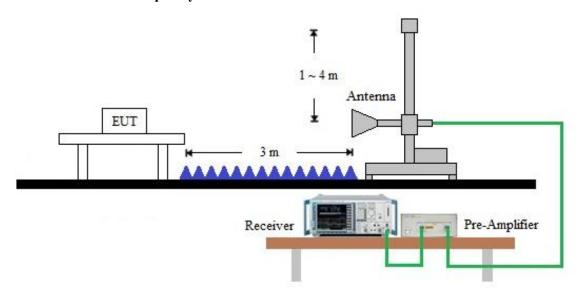
Reading in which marked as Peak & AVG means measurements by using spectrum mode with setting in $RBW = 1 \ MHz$.

If the spectrum mode measured value compliance with the Peak Limits and lower than AVG Limits, the equipment under test shall be deemed to meet both Peak and AVG Limits.

f. Emission frequency and amplitude were recorded, recording at least six highest emissions. The equipment under test and cable configuration of the above highest emission amplitude were recorded.


4.2.4 Deviation from Standard

No deviation



4.2.5 Measurement Configuration

< Radiated Emissions Frequency: 30 MHz to 1000 MHz >

< Radiated Emissions Frequency: above 1GHz >

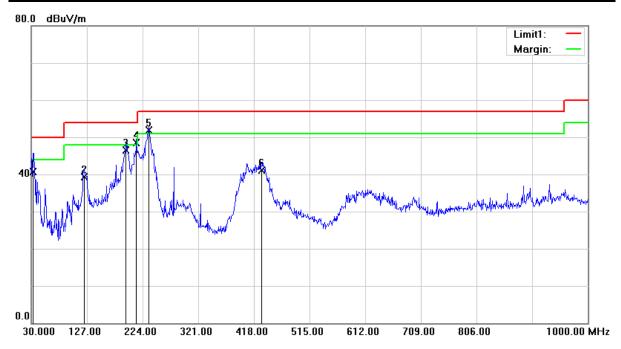
Note:

- (1) Please refer to the 4.2.7 for the actual test configuration.
- (2) Detector function in the form: PK = Peak, QP = Quasi Peak, AVG = Average
- (3) The test result calculated as following:

 Measurement Value = Reading Level + Correct Factor

 Correct Factor = Antenna Factor + Cable Loss Pre-Amplifier Gain (if use)

 Margin Level = Measurement Value Limit Value

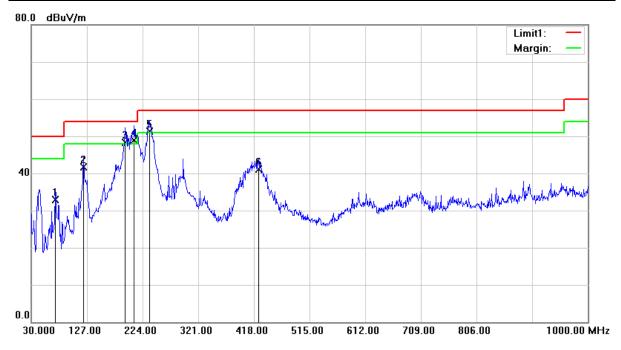

Page 24 of 30 4.

4.2.6 Measurement Result

Test Voltage	120Vac, 60Hz	Frequency Range	30 ~ 1000 MHz
Environmental Conditions	26°C, 44% RH	6dB Bandwidth	120 kHz
Test Date	2025/05/21	Test Distance	3m
Tested by	Karwin Kao	Polarization	Vertical
Test Site	W08-966-1		

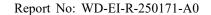
No.	Frequency (MHz)	Reading Level (dBµV)	Correct Factor (dB/m)	Measurement (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Table Degree (degree)	Antenna Height (cm)	Detector
1	32.9100	52.30	-11.52	40.78	50.00	-9.22	360	200	QP
2	122.1500	51.31	-12.04	39.27	54.00	-14.73	178	100	QP
3	194.9000	58.95	-12.37	46.58	54.00	-7.42	164	100	QP
4	213.3300	60.91	-12.42	48.49	54.00	-5.51	144	100	QP
5	234.6700	63.30	-11.46	51.84	57.00	-5.16	354	100	QP
6	431.5800	45.43	-4.41	41.02	57.00	-15.98	360	142	QP

Remark: 1. QP = Quasi Peak


- $2.\ Correct\ Factor = Antenna\ Factor + Cable\ Loss\ (Antenna\ to\ Pre-Amplifier) Pre-Amplifier\ Gain\ +$ Cable Loss (Pre-Amplifier to Receiver)
- 3. Measurement Value = Reading Level + Correct Factor 4. Margin Level = Measurement Value Limit Value

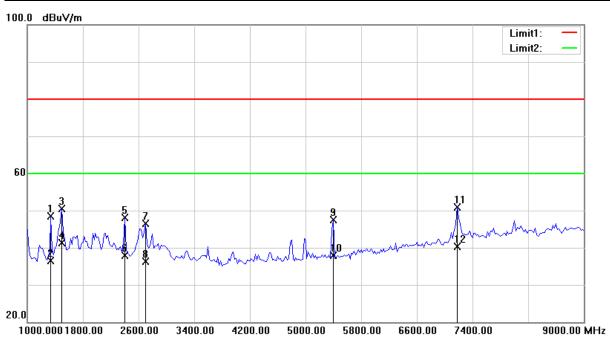
Page 25 of 30

Test Voltage	120Vac, 60Hz	Frequency Range	30 ~ 1000 MHz
Environmental Conditions	26°C, 44% RH	6dB Bandwidth	120 kHz
Test Date	2025/05/21	Test Distance	3m
Tested by	Karwin Kao	Polarization	Horizontal
Test Site	W08-966-1		



No.	Frequency (MHz)	Reading Level (dBµV)	Correct Factor (dB/m)	Measurement (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Table Degree (degree)	Antenna Height (cm)	Detector
1	71.7100	45.14	-12.30	32.84	50.00	-17.16	144	200	QP
2	121.1800	53.83	-12.14	41.69	54.00	-12.31	232	200	QP
3	192.9600	60.66	-12.29	48.37	54.00	-5.63	117	100	QP
4	209.4500	61.44	-12.57	48.87	54.00	-5.13	256	200	QP
5	235.6400	62.63	-11.35	51.28	57.00	-5.72	36	100	QP
6	426.7300	45.90	-4.70	41.20	57.00	-15.80	46	100	QP

Remark: 1. QP = Quasi Peak


- 2. Correction Factor = Antenna Factor + Cable Loss (Antenna to Pre-Amplifier) Pre-Amplifier Gain +
 Cable Loss (Pre-Amplifier to Receiver)
- 3. Measurement Value = Reading Level + Correct Factor 4. Margin Level = Measurement Value Limit Value

Page 26 of 30

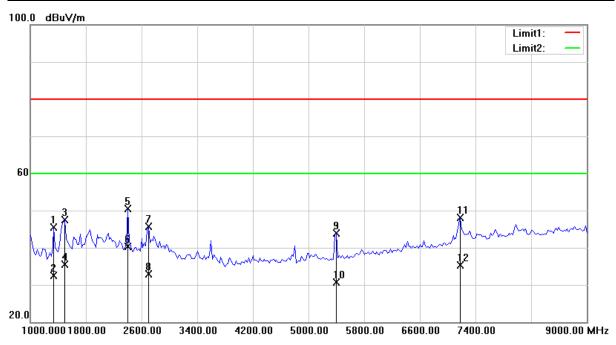
Test Voltage	120Vac, 60Hz	Frequency Range	1 ~ 9 GHz
Environmental Conditions	26°C, 44% RH	6dB Bandwidth	1MHz
Test Date	2025/05/20	Test Distance	3m
Tested by	Karwin Kao	Polarization	Vertical
Test Site	W08-966-1		

No.	Frequency (MHz)	Reading Level (dBµV)	Correct Factor (dB/m)	Measurement (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Table Degree (degree)	Antenna Height (cm)	Detector
1	1340.000	66.80	-18.32	48.48	80.00	-31.52	306	100	peak
2	1340.000	54.82	-18.32	36.50	60.00	-23.50	306	100	AVG
3	1500.000	69.05	-18.47	50.58	80.00	-29.42	155	100	peak
4	1500.000	59.83	-18.47	41.36	60.00	-18.64	155	100	AVG
5	2400.000	62.89	-14.77	48.12	80.00	-31.88	209	100	peak
6	2400.000	52.77	-14.77	38.00	60.00	-22.00	209	100	AVG
7	2700.000	60.84	-14.34	46.50	80.00	-33.50	237	100	peak
8	2700.000	50.56	-14.34	36.22	60.00	-23.78	237	100	AVG
9	5400.000	55.34	-7.92	47.42	80.00	-32.58	201	200	peak
10	5400.000	45.86	-7.92	37.94	60.00	-22.06	201	200	AVG
11	7180.000	52.78	-1.78	51.00	80.00	-29.00	183	100	peak
12	7180.000	42.18	-1.78	40.40	60.00	-19.60	183	100	AVG

Remark: 1. peak = Peak, AVG = Average

- 2. Correct Factor = Antenna Factor + Cable Loss (Antenna to Pre-Amplifier) Pre-Amplifier Gain +
- Cable Loss (Pre-Amplifier to Receiver)

 3. Measurement Value = Reading Level + Correct Factor


 4. Margin Level = Measurement Value Limit Value

Page 27 of 30

Test Voltage	120Vac, 60Hz	Frequency Range	1 ~ 9 GHz
Environmental Conditions	26°C, 44% RH	6dB Bandwidth	1MHz
Test Date	2025/05/20	Test Distance	3m
Tested by	Karwin Kao	Polarization	Horizontal
Test Site	W08-966-1		

No.	Frequency (MHz)	Reading Level (dBµV)	Correct Factor (dB/m)	Measurement (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Table Degree (degree)	Antenna Height (cm)	Detector
1	1340.000	63.75	-18.32	45.43	80.00	-34.57	242	100	peak
2	1340.000	50.86	-18.32	32.54	60.00	-27.46	242	100	AVG
3	1500.000	66.02	-18.47	47.55	80.00	-32.45	283	100	peak
4	1500.000	53.93	-18.47	35.46	60.00	-24.54	283	100	AVG
5	2400.000	65.31	-14.77	50.54	80.00	-29.46	160	100	peak
6	2400.000	55.17	-14.77	40.40	60.00	-19.60	160	100	AVG
7	2700.000	59.97	-14.34	45.63	80.00	-34.37	166	100	peak
8	2700.000	47.28	-14.34	32.94	60.00	-27.06	166	100	AVG
9	5400.000	51.81	-7.92	43.89	80.00	-36.11	138	100	peak
10	5400.000	38.65	-7.92	30.73	60.00	-29.27	138	100	AVG
11	7180.000	49.94	-1.78	48.16	80.00	-31.84	103	100	peak
12	7180.000	36.99	-1.78	35.21	60.00	-24.79	103	100	AVG

- Remark: 1. peak = Peak, AVG = Average
 2. Correct Factor = Antenna Factor + Cable Loss (Antenna to Pre-Amplifier) Pre-Amplifier Gain +
 - Cable Loss (Pre-Amplifier to Receiver)

 3. Measurement Value = Reading Level + Correct Factor

 4. Margin Level = Measurement Value Limit Value

Page 28 of 30

4.2.7 Photographs of Measurement Configuration

Page 29 of 30

< End Page >

Page 30 of 30 4.